Aller au contenu

Classement

Contenu populaire

Affichage du contenu avec la meilleure réputation le 07/15/20 dans toutes les zones

  1. 1. Qu'est-ce qu'un proxy inversé ? Un proxy inversé (reverse proxy) est un type de serveur, habituellement placé en frontal de serveurs web. Contrairement au serveur proxy qui permet à un utilisateur d'accéder à un environnement depuis un point unique, le proxy inversé permet à un utilisateur d'accéder depuis un environnement à des serveurs internes via un point d'entrée unique. Un proxy inversé écoute sur un port donné, sécurisé ou pas, toutes les requêtes à destination de ces services. Au lieu donc d'avoir de multiples portes (les ports des applications auxquelles ont souhaite accéder depuis l'extérieur), on en a une seule qui s'occupera de rediriger les requêtes vers le bon service. 2. Prérequis - Comprendre le fonctionnement de Docker (voir tutoriel introductif) - Savoir se connecter en SSH à son hôte - Savoir rediriger un port depuis sa box - Être un peu curieux Difficulté : Moyenne 3. Pourquoi ? Des solutions de proxy inversé, il en existe des tas, toutes ont leurs avantages et inconvénients. DSM utilise Nginx, mais il existe aussi entre autres HAProxy, Apache, Squid, etc... Dans notre cas ce sera également Nginx, mais via l'image Docker linuxserver/swag, car elle embarque tout un ensemble de fonctionnalités supplémentaires qui agissent en synergie. Cette solution comprend notamment : Certbot : utilitaire permettant l'obtention et le renouvellement automatique de certificats Let's Encrypt. Fail2ban : Script permettant le bannissement d'IP ayant réalisé un nombre donné de tentatives de log infructueuses. Authelia (fichiers de configuration seulement) : Logiciel d'authentification deux facteurs hautement personnalisable et applicable à n'importe quelle application. Nginx : Serveur web qu'on utilise ici pour faire office de proxy inversé. L'intérêt majeur est de pouvoir appliquer des fonctionnalités existantes dans DSM mais réservées à celui-ci, à n'importe quelle application. Et de disposer d'un serveur Nginx entièrement paramétrable a contrario de celui intégré à DSM. ATTENTION : Cette image ne permet pas de déployer automatiquement le certificat obtenu dans DSM à la manière dont le fait acme.sh (voir tutoriel de @Einsteinium pour une utilisation via Docker ou le tutoriel de @oracle7 pour les NAS incompatibles). Vous devrez l'installer manuellement dans DSM si vous souhaitez l'utiliser et le faire tous les 3 mois. Pour ma part je ne m'embête pas, j'utilise l'interface DSM pour obtenir un certificat wildcard avec le nom de domaine Synology qui se renouvelle tout seul tous les 2 mois. Ainsi, j'utilise le nom de domaine Synology pour les services comme Hyper Backup, Drive, etc... tout ce qui est intrinsèquement lié à DSM et qui n'est pas gérable au travers d'un proxy inversé. Tout le reste passe par le certificat OVH que ce conteneur va générer. 4. Hypothèses Pour mieux illustrer le propos, je conviendrai d'un certain nombre d'adresses qui faciliteront l'identification des consignes à l'application du tutoriel : Adressage réseau "physique" : 192.168.1.0/255.255.255.0 (/24 en notation CIDR) Le serveur DHCP ne couvre qu'une partie de la plage 192.168.1.0/24, par exemple 192.168.1.1 à 192.168.1.99 Passerelle (routeur ou modem) : 192.168.1.254 IP (physique, pour utilisation avec réseau macvlan) du conteneur swag : 192.168.1.145 (voir plus loin). IP de l'hôte (le NAS ici, mais ça pourrait être une autre périphérique) : 192.168.1.100 (Je pars du principe que votre hôte a une IP définie en dehors de la plage d'attribution du serveur DHCP, ce n'est pas obligatoire (mais conseillé)). IP virtuelle de l'hôte (voir plus loin) : 192.168.1.200 eth0 est le nom de mon interface physique. 5. Principe L'idée générale de ce que l'on s'apprête à mettre en place peut être résumée de la sorte : Le port 443/tcp (par défaut) est le port d'écoute du proxy inversé. Le port 80 est le port utilisé par Let's Encrypt pour renouveler les certificats si on choisit la méthode de validation HTTP-01 et/ou pour faire une redirection HTTP -> HTTPS. Deux cas de figure se présentent, soit les ports sont libres sur l'hôte, soit ils ne le sont pas : S'ils sont libres, ce qui est le cas si vous décidez d'utiliser SWAG sur une autre machine que le NAS (un Raspberry Pi fait tout à fait le job), alors on peut créer notre conteneur sur un réseau bridge. Dans ce cas-là, la lecture du tutoriel introductif devrait suffire pour la mise en place de swag. S'ils ne le sont pas, ce qui est très probablement le cas sur votre NAS (Webstation installé, Nginx en sous-main) on le rattachera à un réseau macvlan. Un réseau macvlan permet de donner une adresse IP au conteneur sur le réseau physique, par exemple ici 192.168.1.150 Il s'émancipe d'une certaine manière de l'hôte et se comporte globalement comme un périphérique à part entière relié à votre routeur. Il pourra donc utiliser tous les ports dont il a besoin. Au prix d'une impossibilité de communication avec l'IP de l'hôte (limitation intrinsèque au pilote macvlan). Mais il existe une manière de contourner le problème de communication via une interface virtuelle du NAS, vous trouverez plus de détail dans le tutoriel introductif. C'est la méthode que j'ai décidé de privilégier ici, car plus difficile d'accès que via le réseau bridge, et qu'elle permet de ne pas toucher à la configuration du NAS. Je reprendrai principalement ce qu'on peut trouver dans mon tutoriel sur Docker, en l'appliquant à notre cas d'utilisation. En parallèle; n'hésitez pas à parcourir ce magnifique guide, dont ce tutoriel est un bon complément, sur la mise en route de ce conteneur. Vous y trouverez notamment beaucoup plus d'informations sur la partie hébergement de sites, la configuration d'Nginx ; des thèmes que je n'aborderai pas dans le présent tutoriel. 6. Création du réseau macvlan Note : Si vous avez déjà créé un réseau macvlan, rendez-vous au paragraphe 7. Si en plus vous avez déjà créé une interface virtuelle pour la communication NAS <-> conteneur(s) en macvlan, rendez-vous au paragraphe 8. Pour créer le réseau macvlan, il faut définir une portion libre de l'adressage du réseau physique de notre LAN dans laquelle nous pourrons adresser notre (et éventuellement nos futurs) conteneurs. Cet outil est très pratique pour calculer des plages IP, je vois par exemple que si je choisis 192.168.1.144/28, je dispose d'un pool d'IP allant de 192.168.1.145 à 158, ce qui est je pense amplement suffisant, on peut passer le masque à /29 à la place de /28 pour réduire cette plage à 150 au lieu de 158. On peut également décider que ce sera notre seul conteneur en macvlan, pour réduire l'espace à une seule IP il suffit d'utiliser le masque /32. Ici pour couvrir le cas d'utilisation le plus général, on choisira le masque /29. Afin de garder une trace de la configuration du réseau, je vous conseille de créer un fichier macvlan_net.sh. On se rend dans le dossier de notre choix, par exemple chez moi j'ai un dossier networks dans mon dossier partagé docker : cd /volume1/docker/networks touch macvlan_net.sh nano macvlan_net.sh La commande nano est disponible sur vos NAS via les excellents paquets SynoCLI de Synocommunity, en l'occurence SynoCLI Files ici. On entre le script suivant : docker network create -d macvlan \ --subnet=192.168.1.0/24 \ --ip-range=192.168.1.144/29 \ --gateway=192.168.1.254 \ -o parent=eth0 \ macvlan_net On le rend exécutable et l'exécute : chmod u+x macvlan_net.sh ./macvlan_net.sh Une série de caractères s'affiche si tout s'est correctement déroulé. Notes : Pensez à utiliser sudo devant les commandes docker (valable pour toute la suite du tutoriel) si vous n'êtes pas connecté avec l'utilisateur root. ip-range correspond à la plage qu'on a choisie ci-avant. Sur le NAS, si on a activé open vswitch (automatique si par exemple on utilise Virtual Machine Manager), l'interface parente n'est plus eth0 (ou eth1, eth2, ..., ethX) mais ovs_eth0 (respectivement ovs_eth1, etc...). Pour connaître le nom de l'interface physique de sa machine (il varie suivant les machines), en SSH on peut taper : ifconfig | grep -C 3 192.168.1.100 ou ip addr | grep -C 3 192.168.1.100 Il suffit alors de repérer l'interface ayant pour adresse IP l'adresse physique du NAS (ici 192.168.1.100). On peut maintenant vérifier que le réseau existe bien en tapant : docker network ls 7. Création de l'interface virtuelle 7-A. Création du script Comme dit en introduction, il y a un inconvénient majeur à utiliser le réseau macvlan car il n'est plus possible de communiquer entre l'IP de l'hôte, 192.168.1.100 et le conteneur swag dont l'IP sera sur le réseau macvlan. Pour pallier ce défaut, on va créer une interface virtuelle, un autre chemin par lequel le NAS pourra communiquer avec le(s) conteneur(s) sur le réseau macvlan. Cette interface disparaîtra à chaque redémarrage du NAS, on créera donc une tâche planifiée pour la monter automatiquement. __________________ ATTENTION (merci @EVOTk) : L'interface disparaît également lorsque vous : arrêtez désinstallez mettez à jour le paquet Docker. Il faudra donc exécuter ce script manuellement depuis l'interface DSM si cela se produit. __________________ Toute cette procédure est explicitée dans le tutoriel introductif, mais on la reprendra pas à pas ici en personnalisant les commandes à notre besoin. On peut se placer dans un dossier interfaces dans le dossier partagé docker : cd /volume1/docker/interfaces touch mac0.sh nano mac0.sh Puis de manière similaire à ce qu'on a fait pour le script du réseau macvlan, on crée un script pour la création de l'interface : #!/bin/sh # Script permettant la communication entre # un conteneur appartenant a un reseau macvlan et son hote # A lancer au demarrage de l'hote # Temporisation #sleep 60 # Creation de l interface macvlan sur l hote ip link add mac0 link eth0 type macvlan mode bridge # Configuration de l interface avec l adresse reservee ip addr add 192.168.1.200/32 dev mac0 ip link set dev mac0 address AA:BB:CC:DD:11:45 ip link set mac0 up # On fait une route entre les IPv4 du reseau mac0 et l'interface ip route add 192.168.1.144/29 dev mac0 Notes : L'adresse 192.168.1.200/32 correspond à l'IP virtuelle du NAS, le NAS sera accessible et visible également avec cette nouvelle adresse comme avec son IP réelle 192.168.1.100. Mais a contrario de cette dernière, le conteneur peut tout à fait communiquer avec. Vous noterez la présence d'une temporisation commentée de 60 secondes. Si vous rencontrez des problèmes de création de l'interface au démarrage du NAS, n'hésitez pas à décommentez, le script sera décalé d'une minute (ce qui peut permettre d'initialiser la connexion réseau, etc...). On rend le script exécutable et on l'exécute : chmod u+x mac0.sh ./mac0.sh On vérifie maintenant que l'interface est bien active : ifconfig | grep -A 5 mac0 7-A. Création de la tâche On va maintenant créer une tâche planifiée dans DSM pour exécuter ce script à chaque redémarrage du NAS. Direction Panneau de configuration -> Tâches planifiées -> Créer -> Tâche déclenchée -> Script défini par l'utilisateur On est maintenant prêt à passer à la création du conteneur. 8. Création du conteneur 8-A. Fichier docker-compose Il ne reste plus qu'à créer le conteneur, on passera par un fichier docker-compose. La documentation très complète de Linuxserver est disponible à l'adresse : https://github.com/linuxserver/docker-swag Hypothèses : Utilisation d'un nom de domaine OVH Délivrance du certificat par DNS-01 La méthode DNS-01 implique que votre certificat sera validé au niveau de votre hébergeur de zone DNS (OVH par défaut) et non votre NAS comme avec la méthode HTTP-01. DNS-01 est obligatoire en cas de demande d'un certificat wildcard. Si vous souhaitez utiliser la méthode HTTP-01, il faudra prévoir une redirection (NAT) du port 80 de votre box vers l'IP du conteneur. Plus d'information à cette adresse : https://github.com/linuxserver/docker-swag Dans le cadre de nos hypothèses, voici l'architecture du fichier docker-compose : version: '2.1' services: swag: image: linuxserver/swag container_name: swag networks: macvlan_net: ipv4_address: 192.168.1.145 cap_add: - NET_ADMIN environment: - PUID=1026 - PGID=100 - TZ=Europe/Paris - URL=ndd.ovh - SUBDOMAINS=wildcard - VALIDATION=dns - DNSPLUGIN=ovh - DHLEVEL=2048 - EMAIL=mail@ndd.tld - ONLY_SUBDOMAINS=false - STAGING=false volumes: - ./config:/config restart: unless-stopped networks: macvlan_net: external: true Notes : Vous remarquerez que je ne translate aucun port entre le NAS et le conteneur, pourquoi ? N'oubliez pas que ce conteneur sera une machine à part entière sur le réseau physique, dès lors elle n'a pas "d'hôte" à proprement parler. J'aurai simplement mon routeur ou mon modem qui redirigera son port public 443 vers le port 443 de l'adresse IP physique du conteneur (192.168.1.145), comme il le ferait vers n'importe quelle autre machine En amont, une translation de ports depuis le modem/routeur doit être faite pour les ports : TCP 443 pour que le proxy inversé reçoive les requêtes. TCP 80 si vous validez par HTTP-01 OU si vous souhaitez avoir une redirection HTTP -> HTTPS pour vos entrées de proxy inversé (si vous tapez exemple.ndd.tld dans votre navigateur, vous serez rediriger vers https://exemple.ndd.tld). Le PUID proposé correspond à mon utilisateur admin personnalisé, et le PGID de 100 correspond au groupe users par défaut. Vous pouvez définir un utilisateur et un groupe spécifiques qui ne possèderont des droits que sur les dossiers du conteneur. Le paramètre cap_add est utile seulement si vous souhaitez utiliser fail2ban (conseillé), car le conteneur devra modifier ses iptables (pas celles de l'hôte). Notes (2) : Si vous avez utilisé la méthode réseau bridge, il faut penser dans ce cas à faire une redirection des ports sur l'hôte, ça se traduit par l'ajout du bloc "ports" suivant (par exemple entre les blocs "environment" et "volumes") : ports: - 443:443/tcp # Ecoute proxy inverse - 80:80/tcp # Redirection HTTP vers HTTPS 8-B. API OVH Je ne m'attarderai pas sur cette partie, tout est parfaitement décrit dans le tutoriel de @oracle7 sur la génération d'un certificat wildcard par acme.sh J'ajouterai simplement une nuance sur les accès API à donner, ceux-ci me semblent plus restrictifs et préférables : GET /domain/zone/ GET: /domain/zone/ndd.ovh/ GET /domain/zone/ndd.ovh/status GET /domain/zone/ndd.ovh/record GET /domain/zone/ndd.ovh/record/* POST /domain/zone/ndd.ovh/record POST /domain/zone/ndd.ovh/refresh DELETE /domain/zone/ndd.ovh/record/* Également, on peut limiter l'utilisation de l'API à une ou des IP prédéfinies, particulièrement pratique si on dispose d'une IP fixe. En bout de chaîne vous obtiendrez 3 clés permettant un accès à l'API OVH : l'application key, l'application secret et la consumer key. 8-C. Création du fichier ovh.ini Avant la création du conteneur, on va créer en amont le fichier ovh.ini et le préremplir avec vos accès OVH obtenus ci-avant. Ainsi lorsqu'on créera le conteneur, on évitera le message d'erreur comme quoi le conteneur ne dispose pas des accès à l'API. En SSH, connecté avec de préférence l'utilisateur dont on reprendra le PUID/PGID dans les variables d'environnement du fichier docker-compose.yml, on se place dans le dossier destiné à accueillir la configuration du conteneur : cd /volume1/docker/swag Ensuite : mkdir -p config/dns-conf/ cd config/dns-conf/ curl -s https://raw.githubusercontent.com/linuxserver/docker-swag/master/root/defaults/dns-conf/ovh.ini -o ./ovh.ini On édite ensuite le fichier, avec son éditeur préféré (vim, nano, WinSCP, File Station, etc...) et on remplit les champs avec les accès API d'OVH obtenus précédemment : # Instructions: https://github.com/certbot/certbot/blob/master/certbot-dns-ovh/certbot_dns_ovh/__init__.py#L20 # Replace with your values dns_ovh_endpoint = ovh-eu dns_ovh_application_key = VALEUR_APPLICATION_KEY dns_ovh_application_secret = VALEUR_APPLICATION_SECRET dns_ovh_consumer_key = VALEUR_CONSUMER_KEY Pour éviter un message lié aux permissions laxistes du fichier, on va le chmoder : chmod 600 ovh.ini Si en revanche vous obtenez plus tard un erreur due à un des permissions insuffisantes, exécutez de nouveau la commande en remplaçant 600 par 640. 8-D. Création du conteneur Une fois le fichier ovh.ini correctement complété, on peut créer le conteneur, on se place dans le dossier où se trouve le fichier docker-compose et on écrit : docker-compose up -d On peut suivre l'évolution de l'initialisation du conteneur via : docker-compose logs --follow (CTRL+C pour arrêter le défilement des logs en direct). Ou alors via le paquet Docker de DSM ou encore Portainer (voir tutoriel). Normalement à ce stade vous disposez d'un certificat fonctionnel dans /volume1/docker/swag/config/keys/letsencrypt. Il sera tout à fait possible des copier les fichiers ou de créer des liens symboliques pour d'autres applications vers ces fichiers. 🙂 Autre possibilité, monter ce dossier en tant que volume pour un service qui nécessiterait ses propres certificats, bref ils sont à vous, faites-en ce que bon vous semble ! Passons à la configuration du proxy inversé. 9. Configuration du proxy inversé 9-A. Configuration d'une entrée Nginx est une application assez dense, et demande de comprendre les procédés à l'œuvre, le tutoriel sur la mise en place d'un VPS comme frontend de @Einsteinium entre plus en détail dans le sujet, dans notre cas, on a la chance que Linuxserver propose dans son image toute une liste d'applications grand public préconfigurées, dirigeons-nous pour cela dans le dossier suivant : cd /volume1/docker/swag/config/nginx/proxy-confs Et voyons ce qu'on y trouve : ls -l On voit tout un tas d'entrée préconfigurées, qui se classent en deux catégories : subdomain et subfolder. Le proxy inversé peut fonctionner soit en fonction du sous-domaine sollicité, soit du "path" (chemin) après le nom de domaine. Dans notre cas on s'intéressera aux entrées de type subdomain, exemple avec une entrée pour Resilio-sync : Faisons un rapide tour des directives, les champs en vert sont ceux que vous êtes a priori susceptibles de modifier : server { => on commence la définition d'une entrée du proxy inversé listen 443 ssl; et listen [::]:443 ssl; => le proxy inversé va écouter sur le port 443 les requêtes en IPv4 et IPv6 de toutes les sources disponibles. server_name resilio-sync.*; => la condition pour que le proxy inversé réagisse est que l'adresse commence par resilio-sync, exemple -> resilio-sync.ndd.ovh. include /config/nginx/ssl.conf; => à l'exécution, nginx va importer tous les paramètres définis dans le fichier ssl.conf, entre autre le chemin du certificat à utiliser, les algorithmes de chiffrement, etc... #include /config/nginx/ldap.conf; => pour ceux qui souhaitent s'authentifier au travers du proxy à partir d'un serveur d'authentification LDAP. Cette image n'embarque pas de serveur LDAP, elle permet juste de l'intégrer facilement au proxy inversé. Commenté par défaut. #include /config/nginx/authelia-server.conf; => permet d'intégrer une authentification deux facteurs ou simple facteur conditionnelle, fera l'objet d'un autre tutoriel. Cette image n'embarque pas de serveur Authelia, elle permet juste de l'intégrer facilement au proxy inversé. Commenté par défaut. location / { : on définit le comportement de Nginx pour la racine ("/") du sous-domaine. Viennent ensuite trois blocs (de la ligne 21 à 30) affiliés respectivement à une authentification http (l'explorateur demandera un identifiant et un mot de passe au chargement de la page), des paramètres liés à l'authentification par LDAP, et des paramètres liés à Authelia. On n'y touchera pas ici. include /config/nginx/proxy.conf; => Importation d'en-têtes (timeouts, transmission des IP, gestion des cookies, etc...) include /config/nginx/resolver.conf; => Le résolveur DNS utilisé sera le résolveur Docker embarqué dans chaque conteneur. La partie suivante est la partie la plus importante, elle définit comment le conteneur swag va accéder à l'application qu'on souhaite dissimuler derrière le proxy inversé. Il faut garder à l'esprit que la façon dont le conteneur accède au réseau peut être bien différente de la façon dont vous, vous accédez à vos applications par le navigateur. Dans notre cas, vu que le conteneur est sur le réseau macvlan, donc sur le réseau physique, comme la machine depuis laquelle vous tentez d'accéder à ces applications. A une différence près, si vous avez bien suivi, c'est que le conteneur ne pourra pas accéder à son hôte via son IP physique, mais seulement par son IP virtuelle, donc dans notre cas 192.168.1.200 au lieu de 192.168.1.100. Voyons la signification des trois champs : 9-A-1. $upstream_app set $upstream_app resilio-sync; Ici c'est très trompeur, ce que vous lisez là, "resilio-sync", c'est le nom du conteneur. Cette résolution par nom de conteneur, donc ici que le conteneur de nom "swag" cherche à contacter le conteneur de nom "resilio-sync" ne peut s'opérer que si les deux conteneurs se trouvent dans le même réseau. Dans notre cas, si on avait bien un conteneur resilio-sync, il serait probablement en bridge sur son hôte. Par défaut inaccessible au conteneur Let's Encrypt sauf si on a translaté le port du conteneur sur celui du NAS. Dans ce dernier cas on peut tout à fait y accéder en entrant l'adresse IP ou le nom DNS du NAS : 192.168.1.200 (rappelez-vous, IP virtuelle). 9-A-2. $upstream_port set $upstream_port 8888; Il s'agit du port tel qu'il sera accessible pour le conteneur SWAG. Si par exemple sur votre NAS vous avez un conteneur Bitwarden, que par défaut l'interface est émise sur le port 8080 dans le conteneur, mais que vous avez décalé le port pour une raison qui vous appartient, disons vers 5080, il faudra alors utiliser 5080 et pas 8080. 9-A-3. $upstream_proto set $upstream_proto http; Le protocole lié au port, souvent http (on évite de chiffrer entre le NAS et lui-même), mais parfois https (certaines applications comme Unifi-controller n'expose leur interface que via HTTPS), à vous d'adapter en fonction du besoin. 9-A-4. Récapitulatif Prenons le cas de l'application Resilio-sync qu'on aurait installé sur notre NAS, via le centre des paquets (sans Docker donc), j'utiliserai la configuration suivante : set $upstream_app 192.168.1.200; set $upstream_port 8888; set $upstream_proto http; proxy_pass $upstream_proto://$upstream_app:$upstream_port; La ligne proxy_pass construit l'URL à partir des variables précédemment définies, on n'a pas à y toucher. D'autres exemples : Moments set $upstream_app 192.168.1.200; set $upstream_port 10004; # Port personnalisé de Moments dans Portail des applications set $upstream_proto http; proxy_pass $upstream_proto://$upstream_app:$upstream_port; Jeedom auquel j'accède via un nom de domaine local : set $upstream_app raspberrypi.local; set $upstream_port 8088; set $upstream_proto http; proxy_pass $upstream_proto://$upstream_app:$upstream_port; Mon routeur, dont l'interface émet sur le port sécurisé 8443 : set $upstream_app 192.168.1.1; set $upstream_port 8443; set $upstream_proto https; proxy_pass $upstream_proto://$upstream_app:$upstream_port; Une fois toutes nos entrées configurées, on redémarre le conteneur : docker restart swag Et normalement, tout devrait être fonctionnel. 9-B. Redirection HTTP -> HTTPS Par défaut, SWAG écoute sur le port 80. Si vous souhaitez que SWAG fasse une redirection automatique 80 -> 443 pour les requêtes extérieures, il faut faire une redirection du port 80 depuis votre box vers le port 80 de l'IP (192.168.1.145) du conteneur. Si vous aviez l'habitude de faire une demande de certificat depuis DSM via HTTP-01, vous risquez d'être embêté car une seule redirection simultanée du port 80 est possible. 9-C. Validation par HTTP-01 Il se peut que votre hébergeur DNS n'ait pas d'API pour permettre une validation du certificat à son niveau, dans ce cas-là vous pourriez vouloir utiliser un certificat délivré par HTTP-01. Il faut dans ce cas-là rediriger le port 80 de votre box/routeur vers le port 80 de l'IP du conteneur 192.168.1.145 Un fichier docker-compose type pour un renouvellement HTTP-01 pourrait être le suivant : version: '2.1' services: swag: image: linuxserver/swag container_name: swag networks: macvlan_net: ipv4_address: 192.168.1.145 cap_add: - NET_ADMIN environment: - PUID=1026 - PGID=100 - TZ=Europe/Paris - URL=ndd.ovh - SUBDOMAINS=plex,bitwarden,wordpress,dsm, # on liste les sous-domaine, attention à la virgule finale - VALIDATION=http # on remplace dns par http et on supprime la variable DNSPLUGIN - DHLEVEL=2048 - EMAIL=mail@ndd.tld - ONLY_SUBDOMAINS=false - STAGING=false volumes: - ./config:/config restart: unless-stopped networks: macvlan_net: external: true Remarque : Si notre certificat racine (ndd.ovh) est déjà géré ailleurs, mais qu'on souhaite avoir un deuxième proxy inversé sur une autre machine (un VPS par exemple) avec le même domaine, on peut passer la variable ONLY_SUBDOMAINS à true. Ainsi le certificat ne sera généré que pour les sous-domaines. 10. Fail2ban 10-A. Configuration Fail2ban est une application très pratique qu'on retrouve dans DSM, c'est le service qui permet de bannir une personne tentant de se logger plusieurs fois d'affilée de manière infructueuse à un service Synology. Ici, on va pouvoir l'appliquer à ce qu'on veut. Dans DSM c'est configurable dans l'onglet "Blocage". Il y a cependant une condition, fail2ban se base sur la lecture de logs, et en les analysant il va identifier des IP et des résultats de login : échec ou succès. La plupart des logs d'accès sont lisibles par fail2ban, car il embarque tout un set d'expressions régulières lui permettant d'analyser les logs, mais c'est un point à vérifier en amont. Fail2ban se base sur ce qu'on appelle des prisons, ou "jails" en anglais. Allons donc dans le dossier de fail2ban : cd /volume1/docker/swag/config/fail2ban && ls -l $_ filter.d comprend les fichiers de configuration permettant d'analyser et filtrer le contenu des logs en extrayant les informations utiles au moyen d'expressions régulières. action.d comprend les actions à entreprendre quand une analyse répond à un critère de filtrage. Ces dossiers comprennent un grand nombre de fichiers de configuration prédéfinis propres à tout un ensemble d'applications. Remarque : Si l'application que vous souhaitez protéger n'est pas incluse, il faudra alors créer vos propres filtres. fail2ban.sqlite3 est la base de données embarquée. jail.local est le fichier qui nous intéresse en particulier : La section [DEFAULT] définit le comportement global, il peut être écrasé au sein des sections suivantes qui définissent chaque service qu'on souhaite surveiller (maxretry, etc...). Intéressant, et qui n'apparaît pas dans l'impression d'écran, il est possible d'ajouter une directive ignoreip qui permet de whitelister des plages d'IP : ignoreip = 172.16.0.0/12 192.168.0.0/16 10.0.0.0/8 Ici je whitelist les IP pivées qui peuvent vouloir se connecter, pas de risque de me verrouiller du coup. Le fichier jail.local surveille par défaut les 4 services Nginx. On a également un bloc ssh désactivé par défaut. Pour l'activer c'est assez simple : [ssh] enabled = true port = ssh filter = sshd logpath = /log/host_ssh_auth.log Notes : port : ssh représente ici le port SSH par défaut (22), dans les faits si vous avez changé le port SSH sur votre hôte, mettez directement son numéro. filter : cela correspond au nom du fichier .conf qu'on trouvera dans le dossier filter.d, ici on appellera donc le fichier sshd.conf logpath : normalement le contenu des logs SSH se trouve dans /var/log/auth.log, pourquoi ne pas mettre ça ? Si vous écrivez /var/log/auth.log, vous allez surveiller le log d'accès SSH ... au conteneur. A priori ça ne nous intéresse pas, on cherche à lire les logs SSH de l'hôte. Pour que le conteneur y ait accès, il faut les monter via un volume. Il suffit pour cela d'éditer le fichier docker-compose.yml et d'y monter les logs de l'hôte dans un fichier à l'intérieur du conteneur, qu'on définit arbitrairement : version: '2.1' services: swag: image: linuxserver/swag container_name: swag networks: macvlan_net: ipv4_address: 192.168.1.145 cap_add: - NET_ADMIN environment: - PUID=1026 - PGID=100 - TZ=Europe/Paris - URL=ndd.ovh - SUBDOMAINS=wildcard - VALIDATION=dns - DNSPLUGIN=ovh - DHLEVEL=2048 - EMAIL=mail@ndd.tld - ONLY_SUBDOMAINS=false - STAGING=false volumes: - ./config:/config - /var/log/auth.log:/log/host_ssh_auth.log:ro # on ajoute ro pour read-only (lecture seule) restart: unless-stopped networks: macvlan_net: external: true On recrée le conteneur : docker-compose down && docker-compose up -d On aura maintenant fail2ban qui pourra analyser les connexions SSH sur l'hôte. Quelques commandes utiles pour vérifier le bon fonctionnement des prisons : Pour renvoyer la liste des prisons : docker exec -it swag fail2ban-client status Pour afficher le statut d'une prison en particulier, ici ssh : docker exec -it swag fail2ban-client status ssh le terme swag dans les commandes précédentes correspond au nom que vous avez donné au conteneur SWAG. 10-B. Proxy fiable Par défaut, DSM empêche l'identification de l'IP source, sauf si on a précisément ajouter à la liste des proxy fiables l'IP de notre conteneur swag. Pour cela, Panneau de configuration -> Sécurité -> Proxies fiables et on ajoute l'IP du conteneur: On valide, maintenant ce sera l'IP source qui sera lue et non plus l'IP du conteneur SWAG. Ce qui revêt son importance pour fail2ban, sinon vous allez simplement bannir votre proxy inversé, ce serait bête non ? 🙂 Pour ceux qui souhaitent pousser la configuration de fail2ban plus en profondeur : https://www.linode.com/docs/guides/using-fail2ban-to-secure-your-server-a-tutorial/ https://manpages.debian.org/testing/fail2ban/jail.conf.5.en.html (très intéressant) https://github.com/linuxserver/docker-swag#using-fail2ban (commandes utiles) 11. Conclusion Ce conteneur est un package tout-en-un pour la gestion de vos certificats de vos accès externes et internes. Et il est assez facile à manipuler une fois qu'on a compris le principe. Il a surtout l'avantage de ne pas toucher au système, qu'il s'agisse de DSM ou d'une distribution Linux autre. Dans le cas de DSM particulièrement, il est possible de réaliser ce genre de manipulations car DSM utilise Nginx pour son proxy inversé, mais chaque mise à jour de paquet ou d'OS supprimera toutes vos modifications. Il existe un ancien tutoriel de @CoolRaoul pour proxy inversé sur le forum qui explorait justement une solution à ce problème, mais à l'époque le portail des applications DSM n'existait pas encore. 😉 Enfin c'est tout à fait portable, le jour où vous souhaitez héberger le proxy inversé sur un Raspberry Pi, un VPS, ou tout autre périphérique, il n'y aura qu'à copier vos fichiers de configuration d'une machine à l'autre, et faire les quelques adaptations nécessaires (adresses des services internes + redirection des ports). Màj : 22/07/2021
    1 point
  2. 1. Qu'est-ce que Docker ? Docker est un outil qui peut empaqueter une application et ses dépendances dans un conteneur isolé, qui pourra être exécuté sur n'importe quel serveur. On ne parle pas ici de virtualisation mais de conteneurisation, une forme plus légère, qui s'appuie sur certaines parties de la machine hôte pour son fonctionnement. En effet, une machine virtuelle nécessite son propre système d'exploitation et nécessite donc une certaine quantité de mémoire dédiée, tout cela parfois dans le but de faire tourner une seule application. Synology fournit sa propre version du moteur Docker via le centre de paquets. 2. Prérequis On peut trouver la liste des modèles compatibles sur le site de Synology. 3. Pourquoi utiliser Docker sur un NAS Synology ? DSM est un système basé sur un noyau Linux, cependant c'est un système propriétaire et si certains éditeurs de logiciels font l'effort et ont les ressources pour développer un paquet adapté, force est de reconnaître que ça reste limité. SynoCommunity fournit certains paquets très utiles, mais les paquets étant maintenus sur la base du volontariat, les mises à jour sont fréquemment en retard par rapport aux versions officielles. DSM fournit une interface relativement claire et épurée pour Docker, mais limitée pour certains cas d'utilisation. Vous pouvez a priori exécuter n'importe quelle application disponible pour une distribution Linux classique. Enfin, le point le plus intéressant, le système n'est en rien affecté et aucune dépendance n'a besoin d'être installée. Corollairement, sous réserve que le paquet Docker soit implémenté correctement par Synology, les mises à jour de DSM (même majeures) ne devraient poser aucun problème de compatibilité. 4. Aller plus loin J'ai réalisé quelques autres tutoriels sur le forum qui permettent une fois les bases acquises, de mettre en place quelques outils intéressants via Dcker, que ce soit par la réflexion que ça amène ou leur finalité, souvent les deux 😉 Mise à jour automatisée de ses images et conteneurs (en cours d'adaptation pour watchtower au lieu d'ouroboros) : https://www.nas-forum.com/forum/topic/63740-tuto-mise-à-jour-automatique-des-containers-docker/ Centralisation de la gestion de plusieurs instances Docker : https://www.nas-forum.com/forum/topic/66422-tuto-centralisation-des-instances-docker/ Monitoring du réseau via Telegraf - InfluxDB - Grafana : https://www.nas-forum.com/forum/topic/63273-tuto-monitoring-nas-et-réseau/ (pour le monitoring de la Freebox voir le tutoriel de @bruno78 : https://www.nas-forum.com/forum/topic/66394-tuto-monitorer-sa-freebox-revolution/) Gestion de certificat SSL et proxy inversé : https://www.nas-forum.com/forum/topic/67311-tuto-certificat-ssl-reverse-proxy-via-docker/ Mise en place du serveur d'authentification Authelia : https://www.nas-forum.com/forum/topic/71875-tuto-docker-authelia-serveur-dauthentification/ Installation de Pi-hole via réseau macvlan sur un NAS (ou tout autre périphérique) : https://www.nas-forum.com/forum/topic/69319-tuto-docker-macvlan-pi-hole/ Utilisation de SMBv1 de manière sécurisée : https://www.nas-forum.com/forum/topic/72162-tuto-docker-smbv1/ Audio multiroom avec Mopidy/Iris/Snapcast : https://www.nas-forum.com/forum/topic/77063-tuto-audio-multiroom-mopidyirissnapcast/ 5. Comment utiliser Docker ? Nous verrons trois méthodes pour créer des conteneurs : Par l'interface intégrée à DSM via SSH par ligne de commande via SSH en utilisant docker-compose La première peut paraître séduisante mais on est vite limité dans nos possibilités, dans les faits l'utilisation de docker-compose (qui permet une sorte de mise en forme analytique de la ligne de commande) est un excellent compromis entre de la ligne de commande pure et dure et une interface graphique. Pour ceux qui tiennent absolument à avoir une interface graphique, il peut être intéressant de s'orienter vers Portainer, dont je propose un guide d'installation dans mon tutoriel sur la centralisation des instances Docker. 6. Installation de Docker et bonnes pratiques 6-A. Installation et mise en place de Docker Pour installer Docker, il suffit de se rendre dans le centre de paquets et de chercher Docker dans la liste des paquets tiers, on clique sur Installer. Done ! Suite à une remarque de @oracle7, assurez-vous de ne pas avoir créé de dossier partagé "docker" en amont de son installation, cela peut amener à des erreurs dûes au fait que le dossier existe déjà. Il est aussi recommandé de créer un groupe "docker" auquel on pourra ajouter des utilisateurs pour lesquels on souhaite autoriser son utilisation. Direction DSM -> Panneau de configuration -> Groupe (ou Utilisateur & Groupe sous DSM7) -> Créer groupe. On y ajoute les utilisateurs qu'on souhaite voir accéder au dossier partagé créé ci-avant. On autorise également l'accès en lecture/écriture pour ce dossier. On valide. 6-B. Recommandations Avant de commencer le tutoriel et de télécharger vos premières images, quelques recommandations : Docker Hub est un centre de dépôts où la qualité des images peut très fortement varier, dès lors à moins de ne pas avoir le choix, évitez les images qui ne fournissent aucune documentation. Parfois, la page Docker Hub d'une image ne fournit pas beaucoup d'information, vous trouverez généralement plus d'informations concernant la dite image sur GitHub (page GitHub / page DockerHub). En cas de difficulté pour créer un conteneur fonctionnel, il est toujours intéressant d'aller consulter les pages relatives au support (généralement appelé "wiki" et dont le lien est rapidement donné dans le Readme, ou la page liée aux soucis techniques sur GitHub (https://github.com/linuxserver/Heimdall/issues). Il n'est pas toujours plus simple d'utiliser la version conteneurisée d'une application que sa version native (paquet DSM ou paquet Linux classique). Si pour X ou Y raisons il existe des incompatibilités avec un NAS Synology, s'il y a des problèmes de droit d'écriture (ça représente une bonne partie des difficultés qu'on peut rencontrer avec Docker sur un NAS), si les difficultés sont trop nombreuses, si la documentation fait cruellement défaut, ou encore que l'image est à l'abandon, je vous conseille d'opter pour une machine virtuelle et réaliser une installation classique. Ou déporter l'ensemble sur un Raspberry Pi par exemple. C'est du temps gagné et des cheveux épargnés. 🙂 Pour illustrer le tutoriel j'utiliserai comme exemple Heimdall, qui est une dashboard permettant de créer des liens rapidement vers ses applications via des épingles. 7. Interface de Docker dans DSM On clique sur Docker pour arriver sur cette interface : On peut voir l'utilisation globale du processeur et de la mémoire, ainsi que l'utilisation des ressources pour chaque conteneur créé. Dans l'onglet Conteneur, on peut venir éditer nos différents conteneurs : les arrêter et les démarrer (interrupteur à droite), les modifier, les supprimer, etc... L'onglet Registre est celui qui permet de télécharger les images des applications qui nous intéressent. Ce sont les images que l'on trouve dans le dépôt publique d'images Docker, disponible ici, il peut être intéressant d'y faire un tour. L'onglet Image liste les images qu'on a téléchargées sur le NAS et la taille qu'elles occupent dans l'espace de stockage dédié : L'onglet Réseau définit les réseaux (ou interfaces) sur lesquels nos conteneurs seront actifs. L'onglet Journal est un fichier log des différentes actions réalisées (création et suppression de conteneurs, téléchargement d'images, etc...) 7-A. Chronologie La logique est la suivante : On télécharge l'image d'une application qui nous intéresse. Cette image correspond à notre application, qu'on va adapter à nos besoins en 2). On crée un conteneur basé sur cette image en personnalisant les données à notre utilisation : les variables (un login/mdp, l'utilisateur du NAS qui va exécuter l'application, un fuseau horaire, etc...), les ports (comment on y accède), les volumes (souhaite-t-on stocker des données de manière persistante? par défaut, Docker supprime les données lorsqu'un conteneur est arrêté ou supprimé), les réseaux (liés à l'accessibilité et à la communication), etc... On démarre le conteneur. 7-B. Exemple 7-B-1. Image Je reprends l'exemple de l'image linuxserver/heimdall : le terme à gauche est le nom de l'éditeur de l'image, à droite le nom de l'application. Par défaut, toutes les images qu'on peut rechercher dans l'interface Docker de DSM correspondent aux images hébergées sur Docker Hub. Il est possible d'ajouter des registres supplémentaires (GitLab et d'autres). Il suffit de cliquer sur Paramètres puis Ajouter. Dans 99% des cas Docker Hub est la seule source dont vous avez besoin. Pour notre image en question, on trouve différentes informations : Le tag latest correspond à la dernière version stable en date, development parle d'elle-même, vous pouvez également avoir des numéros de version spécifique, si vous ne souhaitez sur une version bien précise de l'image. La plupart du temps, c'est la version latest qui nous intéressera. Par convention (respectée dans l'immense majorité), si le tag n'est pas précisé, on parle de la version latest. On retourne dans l'onglet Registre, et on double-clique sur l'image une fois trouvée via le champ de recherche : On sélectionne le tag latest. L'image se télécharge, on peut voir l'avancement dans l'onglet Image, à droite la taille que l'image occupe sur votre NAS : L'image est téléchargée, on va maintenant pouvoir créer le conteneur. 7-B-2. Paramétrage du Conteneur On va donc créer notre conteneur, ce sera la version exécutée de notre image. Pour en créer un, il suffit de double-cliquer sur l'image qu'on a fini de télécharger : Un nom nous est proposé par défaut, on peut évidemment le modifier pour quelque chose de plus simple. On laisse décoché Exécuter le conteneur à l'aide de privilèges élevés car cela revient à donner un accès root au conteneur, sauf cas très précis c'est déconseillé. C'est une des rares options dans Docker qui peut compromettre l'intégrité de votre NAS si mal utilisée. Si un tutoriel demande à cocher cette option, prenez le temps de comprendre pourquoi et vous demander si c'est vraiment utile. On peut limiter la quantité de mémoire que le conteneur utilisera pour s'exécuter. On clique ensuite sur Paramètres avancés pour poursuivre la configuration du conteneur. 7-B-2-a. Conditions d'exécution En cas d'arrêt inopportun du NAS ou du paquet Docker, on peut autoriser le redémarrage automatique, suivant l'application concernée c'est généralement un paramètre intéressant, on le coche donc. On peut créer un raccourci sur le bureau si on le souhaite. D'autres comportements que le redémarrage automatique sont disponibles mais à ma connaissance, non sélectionnables via l'interface graphique Docker de DSM. 7-B-2-b. Volumes Pour utiliser une application via Docker, les données de cette application doivent bien être écrites quelque part. Précisions : Il n'est pas possible de gérer cet aspect de Docker via l'interface de DSM, uniquement en ligne de commande ou par Docker-compose. Sans aucune précision de votre part concernant l'emplacement de ces données, elles sont écrites, sur nos NAS, dans /volume1/@docker/volumes/ (à ne pas confondre avec /volume1/docker, le premier étant un dossier "caché" dans File Station (visiblement uniquement via SSH/Telnet), le deuxième visible, accessible et créé par nos soins), et sur une distribution Linux classique, /var/lib/docker/volumes/. Si l'image prévoit la création de volumes (visible dans le Dockerfile d'une image via la commande EXPOSE volume), Docker les créera, si vous les déclarez vous pourrez choisir leur emplacement, dans le dossier partagé docker ou ailleurs, si vous ne les déclarez pas, ils seront créés dans les dossiers mentionnés dans le paragraphe précédent. Dans le deuxième cas, si vous supprimez le conteneur, les données ne seront pas effacées, mais les volumes seront laissés à l'abandon (dangling en anglais), et ne seront pas réutilisés en cas de recréation ultérieure. Le plus simple est donc de les déclarer, qu'on souhaite les mettre dans un dossier accessible via File Station, ou non. On assure ainsi la persistance des données. En ce cas, trois méthodes sont possibles : On définit un volume au moment de la création du conteneur, voir ici. Ce volume ne sera pas supprimé à la suppression du conteneur, en revanche il n'est utilisable que par le conteneur en question. => Pratique pour l'essai rapide d'une application On définit un volume indépendamment d'un conteneur. Il est donc autonome des conteneurs qui l'utilisent, car en effet n'importe quel conteneur peut décider d'accéder son contenu en son sein à sa création. => Intéressant si on souhaite que plusieurs applications partagent un même volume On demande au conteneur d'utiliser des dossiers existants du NAS pour y lire ou écrire des données existantes. Ce ne sont pas des volumes Docker à proprement parler. Donc toutes les opérations disponibles via la commande docker volume ne sont pas disponibles pour ce procédé, on appelle plus généralement ces volumes des bind pour les différencier des volumes Docker. => Cette troisième solution est celle qui est le plus souvent utilisée car généralement, on souhaite que l'application qu'on déploie puisse mettre à disposition soit le contenu de dossiers déjà peuplés du NAS, soit permettre que les données générées par l'application ou envoyées vers celle-ci écrivent dans un dossier du NAS accessible par File Station Pour illustrer ce que contient un conteneur, à l'instar de tout système d'exploitation, il est tout à fait possible d'explorer l’arborescence d'un conteneur comme on le ferait pour notre NAS ou n'importe quelle autre machine. Ci-dessous, l’arborescence à la racine du NAS (à gauche) et l'arborescence du conteneur (à droite) : Reprenons les directives du créateur de l'image : On s'intéresse aux paramètres précédés d'un -v, ici on nous dit que /config (chemin dans le conteneur, que les plus observateurs auront vu dans l'arborescence du conteneur sur l'image de droite un peu plus haut) peut être monté vers le NAS si on souhaite assurer la persistance (on le veut dans ce cas, on n'a pas envie de tout reconfigurer à chaque redémarrage du conteneur). On va donc dans l'onglet Volume : Et on clique sur Ajouter un dossier. On est alors amené à choisir le dossier dans lequel on va monter /config. Lorsqu'on installe Docker sur son NAS, un dossier partagé docker est créé, libre à vous de vous organiser de la manière qui vous conviendra le mieux. Souvent, on crée un dossier par conteneur. Je choisis mon dossier et valide : Dans la colonne Chemin d'accès, je suis venu écrire manuellement le chemin absolu du dossier dans lequel je vais monter mes données. 7-B-2-c. Réseau Pour l'accessibilité du tutoriel, je ne mentionne dans cette partie que deux types de réseau : le mode bridge (défaut) et le mode host. Le fonctionnement avancé des réseaux faisant l'objet d'une description plus exhaustive en fin de tutoriel pour ceux que ça intéresse. 7-B-2-c-1. Bridge Par défaut, le mode bridge est sélectionné. Dans ce mode, lorsqu'un conteneur est créé, il obtient une adresse IP privée libre dans le sous-réseau 172.17.0.0/16. La passerelle de ce conteneur sera toujours 172.17.0.1, qui est une des nouvelles interfaces du NAS (consécutivement à l'installation de Docker). Pour s'en assurer, connectez-vous en SSH sur votre NAS et tapez : ifconfig Vous verrez une interface docker0 avec l'IP 172.17.0.1, c'est la porte vers le monde extérieur (LAN + WAN) pour tous les conteneurs dans le réseau bridge 172.17.0.0/24 : c'est l'équivalent de votre box par rapport à Internet. En mode bridge, si les ports ne sont pas translatés de la passerelle (le NAS) vers le conteneur, le conteneur n'est pas accessible depuis votre réseau local (hormis le NAS). On a un fonctionnement similaire à un routeur auquel on dit de translater certains ports vers une machine de notre réseau pour y accéder de l'extérieur. 7-B-2-c-2. host Le mode host permet lui d'exposer directement le conteneur sur le NAS, à la manière de n'importe quel paquet Synology. En gardant l'avantage de conserver les dépendances en son sein et de ne pas impacter le système d'exploitation. Il n'y a dans ce cas aucune redirection de ports à effectuer, ils sont directement joignables sur l'IP du NAS (sous réserve que le pare-feu l'autorise). Dans l'onglet Réseau, on va donc laisser tel quel pour rester en mode bridge : Si on veut passer en mode host, il faut cocher l'option Utiliser le même réseau que Docker host. On notera en dernier lieu qu'il est possible par l'intermédiaire du "+" de créer des réseaux bridge différents de celui par défaut, on appelle ça des réseaux bridge personnalisés ou définis par l'utilisateur. Les réseaux bridge personnalisés font l'objet de remarques supplémentaires en fin de tutoriel. 7-B-2-d. Ports Si on a choisi le mode bridge, Docker liste par défaut les différents ports qu'utilise le conteneur, en proposant la valeur Auto pour le port du NAS. Si vous laissez Auto, alors un port libre aléatoire sera choisi par le système. Dans l'extrême majorité des cas, on préfère définir nous même les ports à exposer, il faut simplement s'assurer qu'ils ne sont pas déjà en cours d'utilisation par un autre service en utilisant via SSH en root la commande : sudo netstat -tulpn | grep LISTEN Autrement, DSM nous préviendra au moment de la création du conteneur que le ou les ports choisis sont déjà utilisés et la création échouera. On aurait pu garder les mêmes ports que dans le conteneur, mais dans le cas présent, 80 est le port utilisé par Web Station, et 443 est utilisé par Nginx, donc j'en ai choisi d'autres qui, eux, sont libres : NDLR : Lorsque la documentation ne précise pas le protocole du transport des données par le dit port, on parle du port TCP par défaut. NOTE : Si on a choisi le mode host, on n'a pas besoin de faire de redirection de ports 7-B-2-e. Liens Les liens permettent de connecter plusieurs conteneurs entre eux, dans la partie de gauche on choisit un autre conteneur, dans la partie de droite un alias, qui permettra de personnaliser des variables d'environnement dans le conteneur lié. Cette fonctionnalité étant dépréciée, je ne m'étendrai pas plus dessus, voir le chapitre Réseau en fin de tutoriel pour une méthode alternative. 7-B-2-f. Variables d'environnement Elles permettent de personnaliser le conteneur pour notre utilisation personnelle. Dans l'image ci-dessus, elles sont identifiées par le -e, on en identifie donc trois : PUID, PGID et TZ Dans l'onglet correspondant, je crée ces trois variables en utilisant le "+" en haut à gauche du cadre : Concernant les variables PUID et PGID, elles vont permettre de définir l'utilisateur du NAS qui exécutera le conteneur. On les retrouve par exemple, mais pas seulement, dans toutes les images Linuxserver, qui est un collectif de développeurs réalisant le portage d'applications phares vers des images Docker standardisées et surtout NAS friendly. Lorsque vous cherchez une application, je vous conseille en premier lieu d'aller jeter un oeil à la liste de leur releases, les ajouts sont fréquents et les mises à jour encore plus. Pour connaître les valeurs numériques à entrer, il faut se connecter en SSH sur le NAS, et taper : id user user étant l'utilisateur qu'on souhaite employer. On obtient plusieurs valeurs, un UID >= 1026, un GID = 100 ou plus, d'autres valeurs de GID dont on ne se servira pas ici. On fait correspondre le PUID au UID et le PGID au GID. Il faut également remplir deux autres conditions pour ne pas avoir de problème de permissions d'écriture dans nos volumes : que l'utilisateur choisi a des droits suffisants dans les dossiers partagés qui seront utilisés, dans mon cas le dossier partagé docker que l'utilisateur soit idéalement propriétaire du dossier heimdall, dans lequel j'ai décidé de monter /config du conteneur. Ces conditions sont très importantes pour que tout fonctionne sans accroc. Les NAS sont généralement assez capricieux au niveau des permissions, car les dossiers sont régis par des ACL (Access Control List), ce qui correspond à l'onglet Utilisateur et Groupe dans le panneau de configuration de DSM. On rencontre beaucoup moins de problèmes sur une distrubition Linux classique. Pour TZ, c'est une variable permettant de définir le fuseau horaire à l'intérieur du conteneur, vous pouvez trouver sur cette page une liste des valeurs à entrer suivant votre localisation. 7-B-3. Création du conteneur On valide les Paramètres avancés, et on clique sur Suivant, un dernier écran propose un récapitulatif de la configuration du conteneur, on applique. On peut vérifier dans l'onglet Conteneur que le conteneur est en cours d'exécution. Il ne reste plus qu'à aller sur notre navigateur et entrer l'adresse du NAS suivi du port HTTP qu'on a translaté depuis le conteneur vers le NAS : Et pour la version HTTPS : 7-B-4. Aperçu et Logs du conteneur Dans notre cas c'est merveilleux tout marche bien, mais il faut savoir que toutes les images ne sont pas aussi bien documentées, et qu'on n'est jamais à l'abri d'une erreur. Dans l'onglet Conteneur, si on en sélectionne un et qu'on clique sur Détail, on peut avoir un aperçu des statistiques du conteneur, et surtout les logs du conteneur dans l'onglet Journal, c'est la première chose à regarder en cas de conteneur non fonctionnel (accès impossible, redémarrage en boucle, etc...). ________________________________________ Ceci conclut la partie destinée à l'interface Docker de DSM, elle conviendra pour la majorité de vos besoins mais peut clairement révéler des insuffisances dans des cas plus poussés. 8. Docker via SSH 8-A. Analyse Un des principaux problèmes qu'on peut rencontrer avec l'interface de DSM c'est l'impossibilité de choisir des dossiers sur le NAS en dehors de /volume1, or Docker s'appuyant sur le système d'exploitation de l'hôte, il peut avoir besoin d'accéder à ses ressources. il est possible de contourner ce problème avec l'interface DSM de Docker via des liens symboliques (symlink) mais je trouve ça plus personnellement plus compliqué qu'un bête script. Par chance, pour les images comportant peu d'infos, il y a souvent a minima le script de démarrage du conteneur, exemple avec l'image utilisée ci-avant : On comprend assez vite la correspondance entre ce qu'on a fait précédemment et ce qu'on lit ici, quelques remarques tout de même : les \ permettent d'effectuer un retour à la ligne et de rendre le script présentable, il est tout à fait possible d'écrire tout à la suite. si j'écris -p 8080:80, je demande de faire correspondre le port 8080 de l'hôte avec le port 80 du conteneur, l'ordre est donc primordial. de la même manière qu'on peut mapper les ports, on peut mapper les volumes : /volume1/docker/heimdall est ici mon dossier sur le NAS, /config mon dossier dans le conteneur, j'écrirai donc ça : -v /volume1/docker/heimdall:/config on voit qu'ici il est possible de définir un autre type de comportement pour le redémarrage (celui qu'on avait validé dans l'interface correspondant à --restart always), ici on empêche le redémarrage automatique si le conteneur a été stoppé correctement. la dernière ligne reprend le nom de l'image, si aucun tag n'est précisé alors latest est implicite. il n'est pas nécessaire de télécharger l'image au préalable, au lancement du script il va aller chercher la version la plus récente du tag demandé, la re-télécharger si l'image est obsolète et enchaîner sur la création du conteneur. il faut ajouter sudo en début de commande si on n'est pas connecté en root au terminal. Cette commande permet de créer le conteneur, on doit ensuite taper : docker start heimdall pour exécuter le conteneur (pensez à ajouter sudo aux commandes docker si vous n'êtes pas connecté en root). 8-B. En détail Voyons plus en détail les possibilités pour chaque paramètre. Lorsqu'un paramètre n'est pas précisé lors de la création du conteneur, Docker regarde dans son démon, à savoir un fichier qui contient des directives à utiliser par défaut sans précision contradictoire de la part de l'utilisateur. Ce fichier se trouve à l'emplacement : /var/packages/Docker/etc/dockerd.json 8-B-1. Restart policies L'argument restart permet de définir le comportement de redémarrage du conteneur : --restart=no : C'est le comportement par défaut, le conteneur ne redémarrera pas s'il s'arrête, que ce soit proprement ou à cause d'une erreur. --restart=always : A contrario, le conteneur tente continuellement d'être redémarré, sauf s'il a été stoppé manuellement. Par contre, en cas de redémarrage du service Docker ou du NAS, le conteneur sera redémarré. --restart=unless-stopped : En cas d'erreur, le conteneur tentera de redémarrer indéfiniment. S'il est arrête manuellement, le conteneur ne sera pas relancé. En cas de redémarrage du service Docker ou du NAS, le conteneur ne sera pas redémarré. --restart=on-failure[:4] : Le conteneur ne sera redémarré qu'en cas d'arrêt pour cause d'erreur, et ce par exemple ici dans une limite de quatre fois. 8-B-2. Network L'argument network permet de définir la connectivité d'un conteneur par rapport à son environnement : --network=none : le conteneur est totalement isolé et autonome, le seul moyen d'y accéder est par terminal. --network=my-network : permet de se connecter à un réseau bridge personnalisé ou macvlan nommé my-network. Si on ne précise rien, le conteneur rejoint le réseau bridge par défaut (voir 7-B-2-c-1). 8-B-3. Ports La gestion des ports permet de rendre une application dans un conteneur accessible sur son hôte via des ports spécifiques. C'est indispensable si on souhaite accéder à un conteneur sur un réseau bridge. Un conteneur sur réseau macvlan a tous ses ports exposés sur sa propre IP, il est comme une machine à part entière sur le réseau, tous ses ports sont accessibles sur le réseau sur lequel il se trouve. 8-B-3-a. Interfaces Pour translater un port, on désigne le port sur lequel l'application est exposée dans le conteneur ainsi que le port sur l'hôte par lequel on accède à cette application. Par exemple : -p 8080:80 L'application disponible sur le port 80 dans le conteneur est translatée sur le port 8080 de l'hôte. -p 0.0.0.0:8080:80 Écrire 8080:80 revient à écrire 0.0.0.0:8080:80 0.0.0.0:8080 signifie l'application est disponible sur le port 8080 de l'hôte sur toutes ses interfaces. Que ce soit localhost (127.0.0.1 => seul l'hôte peut y accéder), l'IP local (par exemple 192.168.0.10), l'IP passerelle bridge 172.17.0.1 ou encore l'IP VPN. Je voudrais par exemple pouvoir vouloir n'accéder à une application que lorsque la requête arrive sur l'IP VPN de l'hôte : -p 10.0.8.1:8080:80 http://10.0.8.1:8080 aboutira, alors que 192.168.0.10:8080 ne donnera rien. 8-B-3-b. Protocoles Si on souhaite autoriser uniquement un protocole, il suffit de le préciser à la fin de l'argument : -p 8080:80/tcp -p 1194:1194/udp 8-B-4. Commandes utiles Assez intuitivement, pour arrêter le conteneur on tape : docker stop heimdall Pour supprimer le conteneur : docker rm heimdall Pour voir la liste des conteneurs actifs, on écrit la commande : docker ps Pour voir les logs d'un conteneur en direct, on écrit (CTRL+C pour arrêter la visualisation) : docker logs -f heimdall Pour gérer les réseaux, reportez-vous à l'aide via la commande : docker network --help Enfin, ça peut être parfois très utile, il est possible de se connecter à l'intérieur d'un conteneur, pour cela : docker exec -it heimdall bash Notes : En général, le paquet bash est présent dans la plupart des images que vous utiliserez. Parfois, si bash ne fonctionne pas, essayez ash. Si bash n'est pas disponible, rien ne vous empêche de taper directement la commande qui vous intéresse, par exemple : docker exec -it heimdall ls -la /etc Pour sortir du conteneur, tapez exit. A vous d'explorer l'ensemble des commandes à votre disposition en consultant le manuel d'aide : docker --help En dernier lieu, je vous invite à parcourir la documentation de Docker, bien que touffue elle est extrêmement claire : https://docs.docker.com/ Comme je disais au début du chapitre, le gros avantage de cette méthode est qu'elle permet de définir des chemins absolus hors /volume1 pour nos volumes. Rien ne m'empêcherait d'aller mapper /var/lib/temperature pour un dossier quelconque du conteneur. Cette possibilité est particulièrement utile quand une application va devoir utiliser le cœur de docker, le fichier /var/run/docker.sock. Ce fichier est particulièrement important, car à partir du moment où on le mappe en tant que volume vers un conteneur, on peut prendre le contrôle de Docker avec cette application. Typiquement, Portainer est une interface graphique à la manière de l'interface Docker de DSM pour gérer ses conteneurs, ses images, et toutes les infos exploitables (mais en mieux 😛). Avertissement !! A partir du moment où vous donnez accès à d'autres dossiers que ceux dans /volume1, le conteneur sera nécessairement lancé avec l'utilsateur root du NAS, car seul lui a accès à cette partie du système. Soyez donc attentifs aux nécessaires précautions que cela implique. 9. Docker-compose via SSH Docker-compose vient compenser les lacunes de la création de conteneur par Docker, dont voici un exemple : Les points forts de docker-compose sont : - écriture analytique, plus lisible qu'un script - possède beaucoup plus de fonctionnalités (dont on n'aborde ici qu'une infime partie) - possibilité de définir plus applications (appelés services) au sein d'un même fichier Dans un fichier docker-compose.yml, on peut définir 3 types d'objets : - des services : ce sont les applications en elles-mêmes - des volumes : ce sont des dossiers dans lesquels on va pouvoir écrire des données de manière persistante - des réseaux (networks) : ils définissent la manière dont sont exposés les conteneurs Il suffit de placer ce fichier dans un dossier, d'en faire le répertoire de travail dans son terminal, et de taper : docker-compose up -d Si je souhaite supprimer les conteneurs (et les éventuels réseaux définis dans le fichier), il me suffit de taper : docker-compose down Ça a également l'avantage de garder la configuration du conteneur au sein d'un fichier. Ce fichier docker-compose.yml peut être créé par Notepad++ sous Windows, ou via l'éditeur de texte sous Linux. Attention !! le fichier ne doit pas contenir de tabulation, tous les décalages sont réalisés à partir d'espace !! Plus d'infos sur Docker-compose à cette page. 10. Quelques autres commandes utiles docker stats Affiche les ressources utilisées par vos conteneurs, se rafraîchit constamment. docker network inspect <nom_du_réseau> Permet d'avoir toutes les informations relatives à un réseau donné. docker rmi <nom_image> Permet de supprimer l'image avec le nom spécifié. 11. Informations complémentaires 11-A. Réseaux Le mode bridge par défaut (c'est-à-dire si on utilise le driver bridge, et qu'on ne rattache le conteneur à aucun réseau bridge particulier) n'est pas idéal si l'on souhaite isoler les conteneurs les uns des autres. Tous les conteneurs appartenant au réseau bridge par défaut peuvent communiquer les uns avec les autres par leur IP, et se situent sur un même sous-réseau (par exemple 172.17.0.0). Si on souhaite s'affranchir des adresses IP (qui peuvent changer entre chaque création et suppression de conteneur) et utiliser plutôt le nom du conteneur pour communiquer avec, il existe deux méthodes : Les liens (évoqués plus avant) : c'est une fonctionnalité officiellement dépréciée dans les nouvelles versions de Docker, elle est cependant présente dans l'inteface Docker de DSM, dans l'onglet Lien lorsqu'on crée ou modifie un conteneur. En précisant le nom d'un autre conteneur, on autorise la communication notre conteneur en devenir et celui-ci. Les réseaux bridge définis par l'utilisateur : la commande docker network permet de gérer les réseaux docker et donc d'en créer de nouveaux. Lorsqu'on crée un réseau bridge, celui-ci aura la propriété intrinsèque que tous les conteneurs qui y sont connectés pourront communiquer entre eux via leurs noms de conteneur. Le réseau 172.17.0.0/24 étant réservé au réseau bridge par défaut, le premier réseau disponible est le 172.18.0.0/24, et ce jusqu'à 172.32.0.0/24. Un réseau de type bridge créé dans l'interface Docker de DSM est un réseau de cette catégorie. 11-A-1. Création du réseau macvlan Il existe un autre type de réseau appelé macvlan : il permet de donner une IP sur le réseau physique à un conteneur, donc par exemple 192.168.0.0/24, et sera donc directement accessible par les autres périphériques de votre réseau local. Merci à @bruno78 pour son apport sur ce sujet en particulier, la suite est très largement inspirée de ses commentaires, et @Didier3L dont les questions ont permis de défricher le terrain. Ce driver possède de gros avantages et un gros défaut : Si le conteneur a une IP sur le réseau physique, elle est directement accessible via tous ses ports. C'est excessivement pratique si certaines applications de l'hôte, ici le NAS, utilisent déjà certains ports : 80, 443, 53, etc... Prenez l'exemple parlant de Pihole, ce dernier utilise le port 80 pour plusieurs tâches, ainsi que le port 53 qui est le port DNS non sécurisé. Si vous utilisez le paquet DNS Server du NAS, le port 53 est déjà en écoute, pareil avec le port 80 si Webstation est exécuté. Nous avons précédemment vu qu'il était possible de translater, sauf que certains ports comme le port 53 ne sont pas réellement déplaçables sur un autre port. Je n'ai donc aucune redirection à faire, j'accéderai à mon application via par exemple 192.168.0.101:80, tout simplement, sans me soucier de ce que le NAS utilise. Attention cependant, en macvlan, l'hôte ne peut plus communiquer, via son interface physique, avec le conteneur !! Ce n'est pas gênant dans le cas du contrôleur Unifi d'Ubiquity, mais beaucoup plus dans le cas de Pihole par exemple. Pour créer un réseau macvlan, on peut le créer de manière externe, via docker network via ligne de commande ou de manière interne lors de l'écriture d'un script ou dans un fichier docker-compose. Dans ce cas, on va créer le réseau macvlan toto de façon externe : docker network create -d macvlan \ --subnet=192.168.0.0/24 \ --ip-range=192.168.0.144/28 \ --gateway=192.168.0.254 \ -o parent=ovs_eth0 \ toto Notes : (les valeurs sont données à titre d'exemple évidemment) - subnet => on choisit le sous-réseau physique, celui de nos machines. - ip-range => on va définir la plage d'IP couverte par le réseau, un calculateur d'IP sera d'une grande aide pour définir le nombre d'IP qu'on réserve et ajuster à notre besoin. Important !! Il est fortement recommandé que la plage d'IP couverte par le serveur DHCP de votre réseau soit dissociée de la plage d'IP allouée au réseau macvlan. - gateway => c'est notre passerelle, vu qu'on est sur le réseau physique c'est généralement votre box ou votre routeur. - parent => c'est le nom de l'interface physique (tapez ifconfig pour vérifier) On valide et notre réseau est créé. Maintenant, il reste un problème à résoudre ; comme évoqué plus haut, tout conteneur dans ce réseau ne sera pas joignable par l'hôte, quelque soit le protocole (ICMP, TCP, UDP, HTTP, etc...) 11-A-2. Création de l'interface virtuelle Une solution existe toutefois, il suffit de créer une nouvelle interface sur le NAS, une interface virtuelle, par lequel il sera aussi normalement accessible que par son interface physique. Pour illustrer, si j'accède à DSM via 192.168.0.100:5000 en temps normal, je pourrai depuis un conteneur sur le réseau macvlan y accéder via l'adresse 192.168.0.200:5000 Le conteneur pourra donc communiquer avec le NAS via cette nouvelle interface. Pour cela, il suffit de taper quelques lignes de commande en SSH : ip link add <nom_interface_macvlan> link <interface_physique> type macvlan mode bridge ip addr add <IP_virtuelle>/32 dev <nom_interface_macvlan> ip link set dev <nom_interface_macvlan> address <adresse_MAC> ip link set <nom_interface_macvlan> up ip route add <Plage_DHCP_réseau_macvlan> dev <nom_interface_macvlan> Si on veut faire correspondre à l'exemple du réseau ci-dessus : - <nom_interface_macvlan> => un nom au hasard, pas de caractères spéciaux, macvlan_int par exemple, peu importe - <interface_physique> => ovs_eth0 - <IP_virtuelle> => on avait choisi arbitrairement l'adresse 192.168.0.140, on vérifie que cette IP n'est pas dans la plage couverte par le réseau macvlan toto - <adresse MAC> => on peut définir une adresse MAC pour notre interface - <Plage_DHCP_réseau_macvlan> => ça correspond à --ip-range dans le script plus haut Vous devriez maintenant avoir maintenant une nouvelle interface visible en tapant ifconfig en SSH. Vous verrez également cette interface sur l'assistant Synology par exemple. Si vous tentez un ping depuis votre NAS vers un conteneur sur le réseau macvlan, cela devrait marcher. Inconvénient majeur : Au reboot, l'interface sera supprimée et le code précédent devra être réintroduit. Pour éviter cela, on peut créer une tâche dans le planificateur de tâches, à exécuter au démarrage du NAS, qui exécute un script comprenant toutes les commandes ci-dessus (celles commençant par IP). On peut également ajouter un sleep 60 pour temporiser 60 secondes avant l'exécution du script, on s'assure ainsi que la machine a bien démarré avant toute chose. MàJ : 08/07/2023
    1 point
  3. Bonjour @Dimebag Darrell, pourras-tu stp nous montrer ton fichier docker-compose.yaml ? j'ai un script qui me fait l'update automatique du pihole 1 fois par mois, il est passé en 5.0 sans même que je n'y prête attention (mais il faut avoir les bons volumes déclarés dans le docker-compose ainsi que les variables d'environnement) ! Le script enchaine dans l'ordre les 4 commandes suivantes : docker-compose pull pihole docker stop pihole-pihole1 docker rm pihole-pihole1 docker-compose up -d pihole Ça doit surement pouvoir s'optimiser, mais cela fonctionne parfaitement. Si nouvelle image pihole:latest il y a , alors elle sera téléchargée et utilisée par le docker au redemarrage.
    1 point
Ce classement est défini par rapport à Bruxelles/GMT+02:00
×
×
  • Créer...

Information importante

Nous avons placé des cookies sur votre appareil pour aider à améliorer ce site. Vous pouvez choisir d’ajuster vos paramètres de cookie, sinon nous supposerons que vous êtes d’accord pour continuer.